WandbOptimizer
framework3.plugins.optimizer.wandb_optimizer
¶
__all__ = ['WandbOptimizer']
module-attribute
¶
WandbOptimizer
¶
Bases: BaseOptimizer
Weights & Biases (wandb) based optimizer for hyperparameter tuning.
This class implements hyperparameter optimization using Weights & Biases' sweep functionality. It allows for efficient searching of hyperparameter spaces for machine learning models within the Framework3 pipeline system.
Key Features
- Integrates with Weights & Biases for distributed hyperparameter optimization
- Supports various types of hyperparameters
- Allows for customizable scoring metrics
- Integrates with the Framework3 pipeline system
Usage
The WandbOptimizer can be used to optimize hyperparameters of a machine learning pipeline:
from framework3.plugins.optimizer import WandbOptimizer
from framework3.base import XYData, F1
# Assuming you have a pipeline and data
pipeline = ...
x_data = XYData(...)
y_data = XYData(...)
optimizer = WandbOptimizer(project="my_project", scorer=F1(), pipeline=pipeline)
optimizer.fit(x_data, y_data)
best_pipeline = optimizer.pipeline
Attributes:
Name | Type | Description |
---|---|---|
project |
str
|
The name of the Weights & Biases project. |
scorer |
BaseMetric
|
The scoring metric for evaluation. |
sweep_id |
str | None
|
The ID of the Weights & Biases sweep. |
pipeline |
BaseFilter | None
|
The pipeline to be optimized. |
Methods:
Name | Description |
---|---|
optimize |
BaseFilter) -> None: Set up the optimization process for a given pipeline. |
fit |
XYData, y: XYData | None) -> None: Perform the hyperparameter optimization. |
predict |
XYData) -> XYData: Make predictions using the best pipeline found. |
evaluate |
XYData, y_true: XYData | None, y_pred: XYData) -> Dict[str, Any]: Evaluate the optimized pipeline. |
Source code in framework3/plugins/optimizer/wandb_optimizer.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
|
pipeline = pipeline
instance-attribute
¶
project = project
instance-attribute
¶
scorer = scorer
instance-attribute
¶
sweep_id = sweep_id
instance-attribute
¶
__init__(project, scorer, pipeline=None, sweep_id=None)
¶
Initialize the WandbOptimizer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
project
|
str
|
The name of the Weights & Biases project. |
required |
scorer
|
BaseMetric
|
The scoring metric for evaluation. |
required |
pipeline
|
BaseFilter | None
|
The pipeline to be optimized. Defaults to None. |
None
|
sweep_id
|
str | None
|
The ID of an existing Weights & Biases sweep. Defaults to None. |
None
|
Source code in framework3/plugins/optimizer/wandb_optimizer.py
evaluate(x_data, y_true, y_pred)
¶
Evaluate the optimized pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_data
|
XYData
|
Input data. |
required |
y_true
|
XYData | None
|
True target data. |
required |
y_pred
|
XYData
|
Predicted target data. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Dict[str, Any]: A dictionary containing the evaluation results. |
Source code in framework3/plugins/optimizer/wandb_optimizer.py
exec(config, x, y=None)
¶
Execute a single run of the pipeline with a given configuration.
This method is called by the Weights & Biases agent for each hyperparameter configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
Dict[str, Any]
|
The hyperparameter configuration to test. |
required |
x
|
XYData
|
The input features. |
required |
y
|
XYData | None
|
The target values. |
None
|
Returns:
Type | Description |
---|---|
Dict[str, float]
|
Dict[str, float]: A dictionary containing the score for the current configuration. |
Raises:
Type | Description |
---|---|
ValueError
|
If the pipeline is not properly configured or returns unexpected results. |
Source code in framework3/plugins/optimizer/wandb_optimizer.py
fit(x, y=None)
¶
Perform the hyperparameter optimization.
This method creates a Weights & Biases sweep if necessary, runs the optimization, and fits the best pipeline found.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
XYData
|
The input features. |
required |
y
|
XYData | None
|
The target values. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If neither pipeline nor sweep_id is provided. |
Source code in framework3/plugins/optimizer/wandb_optimizer.py
get_grid(aux, config)
¶
Recursively process the grid configuration of a pipeline or filter.
This method traverses the configuration dictionary and updates the parameters based on the Weights & Biases configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
aux
|
Dict[str, Any]
|
The configuration dictionary to process. |
required |
config
|
Dict[str, Any]
|
The Weights & Biases configuration. |
required |
Note
This method modifies the input dictionary in-place.
Source code in framework3/plugins/optimizer/wandb_optimizer.py
optimize(pipeline)
¶
Set up the optimization process for a given pipeline.
This method prepares the pipeline for optimization by Weights & Biases.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pipeline
|
BaseFilter
|
The pipeline to be optimized. |
required |
Source code in framework3/plugins/optimizer/wandb_optimizer.py
predict(x)
¶
Make predictions using the best pipeline found.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
XYData
|
The input features. |
required |
Returns:
Name | Type | Description |
---|---|---|
XYData |
XYData
|
The predicted values. |
Raises:
Type | Description |
---|---|
ValueError
|
If the pipeline has not been fitted. |
Source code in framework3/plugins/optimizer/wandb_optimizer.py
start(x, y, X_)
¶
Start the pipeline execution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
XYData
|
Input data for fitting. |
required |
y
|
XYData | None
|
Target data for fitting. |
required |
X_
|
XYData | None
|
Data for prediction (if different from x). |
required |
Returns:
Type | Description |
---|---|
XYData | None
|
XYData | None: Prediction results if X_ is provided, else None. |
Raises:
Type | Description |
---|---|
ValueError
|
If the pipeline has not been fitted. |