OptunaOptimizer
framework3.plugins.optimizer.optuna_optimizer
¶
OptunaOptimizer
¶
Bases: BaseOptimizer
Optuna-based optimizer for hyperparameter tuning.
This class implements hyperparameter optimization using the Optuna framework. It allows for efficient searching of hyperparameter spaces for machine learning models.
Key Features
- Supports various types of hyperparameters (categorical, integer, float)
- Allows for customizable optimization direction (minimize or maximize)
- Can resume previous studies or start new ones
- Integrates with the Framework3 pipeline system
Usage
The OptunaOptimizer can be used to optimize hyperparameters of a machine learning pipeline:
from framework3.plugins.optimizer import OptunaOptimizer
from framework3.base import XYData
# Assuming you have a pipeline and data
pipeline = ...
x_data = XYData(...)
y_data = XYData(...)
optimizer = OptunaOptimizer(direction="minimize", n_trials=100)
optimizer.optimize(pipeline)
optimizer.fit(x_data, y_data)
best_pipeline = optimizer.pipeline
Attributes:
Name | Type | Description |
---|---|---|
direction |
str
|
The direction of optimization ("minimize" or "maximize"). |
n_trials |
int
|
The number of trials for the optimization process. |
load_if_exists |
bool
|
Whether to load an existing study if one exists. |
reset_study |
bool
|
Whether to reset the study before optimization. |
pipeline |
BaseFilter | None
|
The pipeline to be optimized. |
study_name |
str | None
|
The name of the Optuna study. |
storage |
str | None
|
The storage URL for the Optuna study. |
Methods:
Name | Description |
---|---|
optimize |
BaseFilter): Set up the optimization process for a given pipeline. |
fit |
XYData, y: XYData | None): Perform the optimization and fit the best pipeline. |
predict |
XYData) -> XYData: Make predictions using the optimized pipeline. |
evaluate |
XYData, y_true: XYData | None, y_pred: XYData) -> Dict[str, Any]: Evaluate the optimized pipeline. |
Source code in framework3/plugins/optimizer/optuna_optimizer.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
|
direction = direction
instance-attribute
¶
load_if_exists = load_if_exists
instance-attribute
¶
n_trials = n_trials
instance-attribute
¶
pipeline = pipeline
instance-attribute
¶
reset_study = reset_study
instance-attribute
¶
storage = storage
instance-attribute
¶
study_name = study_name
instance-attribute
¶
__init__(direction, n_trials=2, load_if_exists=False, reset_study=False, pipeline=None, study_name=None, storage=None)
¶
Initialize the OptunaOptimizer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
direction
|
str
|
The direction of optimization ("minimize" or "maximize"). |
required |
n_trials
|
int
|
The number of trials for the optimization process. |
2
|
load_if_exists
|
bool
|
Whether to load an existing study if one exists. |
False
|
reset_study
|
bool
|
Whether to reset the study before optimization. |
False
|
pipeline
|
BaseFilter | None
|
The pipeline to be optimized. |
None
|
study_name
|
str | None
|
The name of the Optuna study. |
None
|
storage
|
str | None
|
The storage URL for the Optuna study. |
None
|
Source code in framework3/plugins/optimizer/optuna_optimizer.py
build_pipeline(dumped_pipeline, f)
¶
Build a pipeline from a dumped configuration.
This method processes the dumped pipeline configuration, applies the provided callable to the grid parameters, and constructs a new BaseFilter object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dumped_pipeline
|
Dict[str, Any]
|
The dumped pipeline configuration. |
required |
f
|
Callable
|
A function to apply to each grid parameter. |
required |
Returns:
Name | Type | Description |
---|---|---|
BaseFilter |
BaseFilter
|
The constructed pipeline. |
Note
This method uses the Container.pif for dependency injection when building the pipeline components.
Source code in framework3/plugins/optimizer/optuna_optimizer.py
evaluate(x_data, y_true, y_pred)
¶
Evaluate the optimized pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x_data
|
XYData
|
The input features. |
required |
y_true
|
XYData | None
|
The true target values (if applicable). |
required |
y_pred
|
XYData
|
The predicted values. |
required |
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Dict[str, Any]: A dictionary containing evaluation metrics. |
Raises:
Type | Description |
---|---|
ValueError
|
If the pipeline is not fitted before evaluating. |
Source code in framework3/plugins/optimizer/optuna_optimizer.py
finish()
¶
Source code in framework3/plugins/optimizer/optuna_optimizer.py
fit(x, y=None)
¶
Perform the optimization and fit the best pipeline.
This method runs the Optuna optimization process and fits the best found pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
XYData
|
The input features. |
required |
y
|
XYData | None
|
The target values (if applicable). |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If the pipeline is not defined before fitting. |
Source code in framework3/plugins/optimizer/optuna_optimizer.py
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
|
get_grid(aux, f)
¶
Recursively process the grid configuration of a pipeline or filter.
This method traverses the configuration dictionary and applies the provided callable to each grid parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
aux
|
Dict[str, Any]
|
The configuration dictionary to process. |
required |
f
|
Callable
|
A function to apply to each grid parameter. |
required |
Note
This method modifies the input dictionary in-place.
Source code in framework3/plugins/optimizer/optuna_optimizer.py
optimize(pipeline)
¶
Set up the optimization process for a given pipeline.
This method prepares the Optuna study for optimization.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pipeline
|
BaseFilter
|
The pipeline to be optimized. |
required |
Source code in framework3/plugins/optimizer/optuna_optimizer.py
predict(x)
¶
Make predictions using the optimized pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
XYData
|
The input features. |
required |
Returns:
Name | Type | Description |
---|---|---|
XYData |
XYData
|
The predictions. |
Raises:
Type | Description |
---|---|
ValueError
|
If the pipeline is not fitted before predicting. |