WandbOptimizer
labchain.plugins.optimizer.wandb_optimizer
¶
__all__ = ['WandbOptimizer']
module-attribute
¶
WandbOptimizer
¶
Bases: BaseOptimizer
Weights & Biases optimizer for hyperparameter tuning.
Supports multiple search strategies:
- grid: Exhaustive search (all combinations)
- random: Random sampling
- bayes: Bayesian optimization (recommended for DL)
Usage:
python
# Bayesian optimization (recommended)
optimizer = WandbOptimizer(
project="my-project",
scorer=F1(),
pipeline=my_pipeline,
method="bayes",
n_trials=20,
early_terminate={"type": "hyperband", "min_iter": 5}
)
optimizer.fit(x_train, y_train)
predictions = optimizer.predict(x_test)
Hyperparameter syntax in filters:
python
# Grid search (backward compatible)
self._grid = {"lr": [1e-5, 1e-4, 1e-3], "dropout": [0.1, 0.2, 0.3]}
# Bayesian optimization (new)
self._grid = {
"lr": {"distribution": "log_uniform_values", "min": 1e-5, "max": 1e-3},
"dropout": {"distribution": "uniform", "min": 0.1, "max": 0.3}
}
Source code in labchain/plugins/optimizer/wandb_optimizer.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 | |
early_terminate = early_terminate
instance-attribute
¶
method = method
instance-attribute
¶
n_trials = n_trials
instance-attribute
¶
pipeline = pipeline
instance-attribute
¶
project = project
instance-attribute
¶
scorer = scorer
instance-attribute
¶
sweep_id = sweep_id
instance-attribute
¶
__init__(project, scorer, pipeline=None, sweep_id=None, method='grid', n_trials=None, early_terminate=None)
¶
Initialize the WandbOptimizer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
project
|
str
|
W&B project name |
required |
scorer
|
BaseMetric
|
Metric to optimize (maximize if higher_better=True) |
required |
pipeline
|
BaseFilter | None
|
Pipeline to optimize (must have _grid defined) |
None
|
sweep_id
|
str | None
|
Existing sweep ID to resume (optional) |
None
|
method
|
Literal['grid', 'random', 'bayes']
|
Search strategy - "grid", "random", or "bayes" (default: "bayes") |
'grid'
|
n_trials
|
Optional[int]
|
Max trials (None = unlimited for grid, required for random/bayes) |
None
|
early_terminate
|
Optional[Dict[str, Any]]
|
Early stopping config, e.g.: |
None
|
Source code in labchain/plugins/optimizer/wandb_optimizer.py
evaluate(x_data, y_true, y_pred)
¶
Evaluate optimized pipeline.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x_data
|
XYData
|
Input data |
required |
y_true
|
XYData | None
|
True targets |
required |
y_pred
|
XYData
|
Predictions |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Evaluation metrics dict |
Source code in labchain/plugins/optimizer/wandb_optimizer.py
exec(config, x, y=None)
¶
Execute a single trial with given hyperparameters.
Called by W&B agent for each configuration.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
config
|
Dict[str, Any]
|
Sampled hyperparameters from W&B |
required |
x
|
XYData
|
Training features |
required |
y
|
XYData | None
|
Training targets |
None
|
Returns:
| Type | Description |
|---|---|
Dict[str, float]
|
Dict with scorer metric: {scorer_name: score} |
Source code in labchain/plugins/optimizer/wandb_optimizer.py
fit(x, y=None)
¶
Run hyperparameter optimization.
Process
- Create W&B sweep (or resume existing)
- Run optimization trials
- Load best config
- Fit final pipeline with best hyperparameters
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x
|
XYData
|
Training features |
required |
y
|
XYData | None
|
Training targets (optional for unsupervised) |
None
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If neither pipeline nor sweep_id provided |
Source code in labchain/plugins/optimizer/wandb_optimizer.py
get_grid(aux, config)
¶
Recursively update pipeline params with W&B config.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
aux
|
Dict[str, Any]
|
Pipeline configuration dict |
required |
config
|
Dict[str, Any]
|
W&B sampled hyperparameters |
required |
Source code in labchain/plugins/optimizer/wandb_optimizer.py
optimize(pipeline)
¶
Set up optimization for the given pipeline.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
pipeline
|
BaseFilter
|
Pipeline to optimize (sets verbose=False) |
required |
Source code in labchain/plugins/optimizer/wandb_optimizer.py
predict(x)
¶
start(x, y, X_)
¶
Unified fit/predict interface.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x
|
XYData
|
Data for fitting |
required |
y
|
XYData | None
|
Targets for fitting |
required |
X_
|
XYData | None
|
Data for prediction (if different from x) |
required |
Returns:
| Type | Description |
|---|---|
XYData | None
|
Predictions if X_ provided, else None |