SklearnOptimizer
labchain.plugins.optimizer.sklearn_optimizer
¶
__all__ = ['SklearnOptimizer']
module-attribute
¶
SklearnOptimizer
¶
Bases: BaseOptimizer
Sklearn-based optimizer for hyperparameter tuning using GridSearchCV.
This class implements hyperparameter optimization using scikit-learn's GridSearchCV. It allows for efficient searching of hyperparameter spaces for machine learning models within the Framework3 pipeline system.
Key Features
- Supports various types of hyperparameters (categorical, numerical)
- Integrates with scikit-learn's GridSearchCV for exhaustive search
- Allows for customizable scoring metrics
- Integrates with the Framework3 pipeline system
Usage
The SklearnOptimizer can be used to optimize hyperparameters of a machine learning pipeline:
from framework3.plugins.optimizer import SklearnOptimizer
from framework3.base import XYData
# Assuming you have a pipeline and data
pipeline = ...
x_data = XYData(...)
y_data = XYData(...)
optimizer = SklearnOptimizer(scoring='accuracy', cv=5)
optimizer.optimize(pipeline)
optimizer.fit(x_data, y_data)
best_pipeline = optimizer.pipeline
Attributes:
| Name | Type | Description |
|---|---|---|
scoring |
str | Callable | Tuple | Dict
|
The scoring metric for GridSearchCV. |
pipeline |
BaseFilter | None
|
The pipeline to be optimized. |
cv |
int
|
The number of cross-validation folds. |
_grid |
Dict
|
The parameter grid for GridSearchCV. |
_filters |
List[Tuple[str, SkWrapper]]
|
The list of pipeline steps. |
_pipeline |
Pipeline
|
The scikit-learn Pipeline object. |
_clf |
GridSearchCV
|
The GridSearchCV object. |
Methods:
| Name | Description |
|---|---|
optimize |
BaseFilter): Set up the optimization process for a given pipeline. |
fit |
XYData, y: Optional[XYData]) -> None | float: Fit the GridSearchCV object to the given data. |
predict |
XYData) -> XYData: Make predictions using the best estimator found by GridSearchCV. |
evaluate |
XYData, y_true: XYData | None, y_pred: XYData) -> Dict[str, Any]: Evaluate the optimized pipeline. |
Source code in labchain/plugins/optimizer/sklearn_optimizer.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 | |
n_jobs = n_jobs
instance-attribute
¶
pipeline = pipeline
instance-attribute
¶
__init__(scoring, pipeline=None, cv=2, n_jobs=None)
¶
Initialize the SklearnOptimizer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
scoring
|
str | Callable | Tuple | Dict
|
Strategy to evaluate the performance of the cross-validated model. |
required |
pipeline
|
BaseFilter | None
|
The pipeline to be optimized. Defaults to None. |
None
|
cv
|
int
|
Determines the cross-validation splitting strategy. Defaults to 2. |
2
|
Source code in labchain/plugins/optimizer/sklearn_optimizer.py
evaluate(x_data, y_true, y_pred)
¶
Evaluate the optimized pipeline.
This method applies each metric in the pipeline to the predicted and true values, and includes the best score from GridSearchCV.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x_data
|
XYData
|
Input data. |
required |
y_true
|
XYData | None
|
True target data. |
required |
y_pred
|
XYData
|
Predicted target data. |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dict[str, Any]: A dictionary containing the evaluation results for each metric and the best score from GridSearchCV. |
Example
Source code in labchain/plugins/optimizer/sklearn_optimizer.py
fit(x, y)
¶
Fit the GridSearchCV object to the given data.
This method performs the grid search and prints the results.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x
|
XYData
|
The input features. |
required |
y
|
Optional[XYData]
|
The target values. |
required |
Returns:
| Type | Description |
|---|---|
None | float
|
None | float: The best score achieved during the grid search. |
Source code in labchain/plugins/optimizer/sklearn_optimizer.py
get_grid(aux)
¶
Recursively process the grid configuration of a pipeline or filter.
This method traverses the configuration dictionary and builds the parameter grid for GridSearchCV.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
aux
|
Dict[str, Any]
|
The configuration dictionary to process. |
required |
Note
This method modifies the _grid attribute in-place.
Source code in labchain/plugins/optimizer/sklearn_optimizer.py
optimize(pipeline)
¶
Set up the optimization process for a given pipeline.
This method prepares the GridSearchCV object for optimization.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
pipeline
|
BaseFilter
|
The pipeline to be optimized. |
required |
Source code in labchain/plugins/optimizer/sklearn_optimizer.py
predict(x)
¶
Make predictions using the best estimator found by GridSearchCV.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x
|
XYData
|
The input features. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
XYData |
XYData
|
The predicted values wrapped in an XYData object. |
Source code in labchain/plugins/optimizer/sklearn_optimizer.py
start(x, y, X_)
¶
Start the pipeline execution.
This method fits the optimizer and makes predictions if X_ is provided.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x
|
XYData
|
Input data for fitting. |
required |
y
|
Optional[XYData]
|
Target data for fitting. |
required |
X_
|
Optional[XYData]
|
Data for prediction (if different from x). |
required |
Returns:
| Type | Description |
|---|---|
Optional[XYData]
|
Optional[XYData]: Prediction results if X_ is provided, else None. |
Raises:
| Type | Description |
|---|---|
Exception
|
If an error occurs during pipeline execution. |