GridOptimizer
labchain.plugins.optimizer.grid_optimizer
¶
GridOptimizer
¶
Bases: BaseOptimizer
Grid search optimizer for hyperparameter tuning.
This class implements a grid search for hyperparameter optimization. It exhaustively searches through a specified parameter grid to find the best combination of hyperparameters.
Key Features
- Supports various types of hyperparameters (categorical, numerical)
- Performs an exhaustive search over the specified parameter grid
- Evaluates each parameter combination on the entire dataset
- Integrates with the Framework3 pipeline system
Usage
The GridOptimizer can be used to optimize hyperparameters of a machine learning pipeline:
from framework3.plugins.optimizer import GridOptimizer
from framework3.base import XYData
# Assuming you have a pipeline and data
pipeline = ...
x_data = XYData(...)
y_data = XYData(...)
optimizer = GridOptimizer(scoring=some_metric)
optimizer.optimize(pipeline)
optimizer.fit(x_data, y_data)
best_pipeline = optimizer.pipeline
Attributes:
| Name | Type | Description |
|---|---|---|
scoring |
BaseMetric
|
The scoring metric to use for evaluation. |
pipeline |
BaseFilter | None
|
The pipeline to be optimized. |
best_params |
Dict[str, Any]
|
The best parameters found during the search. |
best_score |
float
|
The best score achieved during the search. |
_grid |
Dict[str, Any]
|
The parameter grid for the search. |
_results |
DataFrame | None
|
DataFrame containing all evaluation results. |
Methods:
| Name | Description |
|---|---|
optimize |
BaseFilter): Set up the optimization process for a given pipeline. |
fit |
XYData, y: Optional[XYData]) -> None | float: Perform the grid search and fit the best pipeline. |
predict |
XYData) -> XYData: Make predictions using the best pipeline found. |
evaluate |
XYData, y_true: XYData | None, y_pred: XYData) -> Dict[str, Any]: Evaluate the optimized pipeline. |
Source code in labchain/plugins/optimizer/grid_optimizer.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | |
pipeline = None
instance-attribute
¶
scorer = scorer
instance-attribute
¶
__init__(scorer, pipeline=None)
¶
Source code in labchain/plugins/optimizer/grid_optimizer.py
evaluate(x_data, y_true, y_pred)
¶
Evaluate the optimized pipeline.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x_data
|
XYData
|
Input data. |
required |
y_true
|
XYData | None
|
True target data. |
required |
y_pred
|
XYData
|
Predicted target data. |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dict[str, Any]: A dictionary containing the evaluation results. |
Source code in labchain/plugins/optimizer/grid_optimizer.py
fit(x, y)
¶
Perform the grid search and fit the best pipeline.
This method runs the grid search optimization process and fits the best found pipeline.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x
|
XYData
|
The input features. |
required |
y
|
Optional[XYData]
|
The target values (if applicable). |
required |
Returns:
| Type | Description |
|---|---|
None | float | dict
|
None | float: None if the pipeline is fitted successfully, or the best score if available. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the pipeline is not defined before fitting. |
Source code in labchain/plugins/optimizer/grid_optimizer.py
get_from_grid(aux, config)
¶
Recursively process the grid configuration of a pipeline or filter.
This method traverses the configuration dictionary and applies the grid parameters.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
aux
|
Dict[str, Any]
|
The configuration dictionary to process. |
required |
config
|
Dict[str, Any]
|
The configuration to apply. |
required |
Note
This method modifies the input dictionary in-place.
Source code in labchain/plugins/optimizer/grid_optimizer.py
get_grid(aux, grid)
¶
Recursively process the grid configuration of a pipeline or filter.
This method traverses the configuration dictionary and extracts the grid parameters.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
aux
|
Dict[str, Any]
|
The configuration dictionary to process. |
required |
grid
|
Dict[str, Any]
|
The grid to populate with hyperparameters. |
required |
Note
This method modifies the input dictionary in-place.
Source code in labchain/plugins/optimizer/grid_optimizer.py
nested_product(d)
¶
Source code in labchain/plugins/optimizer/grid_optimizer.py
optimize(pipeline)
¶
Set up the optimization process for a given pipeline.
This method prepares the pipeline for grid search optimization.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
pipeline
|
BaseFilter
|
The pipeline to be optimized. |
required |
Source code in labchain/plugins/optimizer/grid_optimizer.py
predict(x)
¶
Make predictions using the best pipeline found.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x
|
XYData
|
The input features. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
XYData |
XYData
|
The predictions. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the pipeline is not fitted before predicting. |
Source code in labchain/plugins/optimizer/grid_optimizer.py
start(x, y, X_)
¶
Start the pipeline execution.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
x
|
XYData
|
Input data for fitting. |
required |
y
|
XYData | None
|
Target data for fitting. |
required |
X_
|
XYData | None
|
Data for prediction (if different from x). |
required |
Returns:
| Type | Description |
|---|---|
XYData | None
|
XYData | None: Prediction results if X_ is provided, else None. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If the pipeline has not been fitted. |